UKOUG Tech15 : Call For Papers

I just noticed Neil Chandler‘s blog post about the Call For Papers for UKOUG Tech15.

ukoug-tech15

I’ve just submitted my sessions for this year. It’s in my home town, so life will be easy this year. :)

Cheers

Tim…


UKOUG Tech15 : Call For Papers was first posted on April 16, 2015 at 3:20 pm.
©2012 "The ORACLE-BASE Blog". Use of this feed is for personal non-commercial use only. If you are not reading this article in your feed reader, then the site is guilty of copyright infringement.

All Change : Responsive and mobile and all that jazz

If you’ve been near oracle-base.com recently you will see things have changed a bit…

The Main Website

For a couple of weeks I’ve been playing with Bootstrap and Font Awesome to make the main body of the website mobile friendly. Last night I got a bit bored so I decided to shift the whole site to the responsive mobile template so it’s a single look and feel regardless of the device.

Less than 5% of my traffic is from mobiles and tablets, so that wasn’t really the motivation for doing this. Over the years I’ve accumulated a whole bunch of crappy code to deal with specific situations and it was getting a little hard to manage the basic framework of the website. The switch to using Bootstrap meant I could effectively throw a whole bunch of my code away, making my life much easier. The main goal has been to keep everything plain and clean and minimize the amount of time I spend on maintenance. That leaves me more time to work on content, which is the important thing. The whole responsive thing was an added bonus.

It’s a work-in-progress. There are still some things to neaten up a little.

  • There are some pages that are “less responsive” than they should be. :)
  • I keep tweaking font sizes and colours.
  • I’ve got to sort out the main image in the navigation bar.

Overall, I’m relatively happy with it and it seems to work fine in the browsers I’ve tried (IE, Chrome, Firefox, Opera, Safari) and the mobiles and tablets I’ve tried it on.

The Blog

I switched the blog to the “Twenty Fifteen” theme a few days ago. The old theme was getting a bit long in the tooth and required an ugly plugin to be make it mobile enabled.

I’m not totally happy with the “Twenty Fifteen” theme, but it will do until I find something I prefer. My main criteria is it has to be really plain. :)

Comments?

If anyone has any comments or suggestions I would be happy to hear them.

Cheers

Tim…


All Change : Responsive and mobile and all that jazz was first posted on April 16, 2015 at 12:08 pm.
©2012 "The ORACLE-BASE Blog". Use of this feed is for personal non-commercial use only. If you are not reading this article in your feed reader, then the site is guilty of copyright infringement.

Oracle APEX 5.0 released today

After 2.5 years of development, today is the day APEX 5.0 is publicly released and ready to be downloaded to install on your own environment.

In my view it's the best release ever. Not so much of the new Page Designer - although that is definitely a piece of art and it increased productivity even further - but because it's the first time whole of APEX got refreshed and every piece was put under a radar to see how it could be improved. All the small changes and the new UI, together with the Page Designer makes it a whole new development tool, without losing it's strengths from before.

Also note that APEX 5.0 enables many new features build on top of the Oracle Database 12c features, so if you're on that database, you'll see even more nice features.

If you wonder if you should wait with upgrading to APEX 5.0 because you're afraid that your current APEX applications break, I can only share that I upgraded many of my applications as part of EA/beta and most of my apps kept running without issues. As always you have to try your applications yourself, but the APEX development team spend a lot of time trying to keep things backwards compatible. But make sure to have a look at the APEX 5.0 release notes and known issues as they contain important information about changes, expected behaviour and workarounds.

You can develop online on apex.oracle.com or you can download APEX 5.0 and install into your own environment.

Cartesian join

Some time ago I pulled off the apocryphal “from 2 hours to 10 seconds” trick for a client using a technique that is conceptually very simple but, like my example from last week, falls outside the pattern of generic SQL. The problem (with some camouflage) is as follows: we have a data set with 8 “type” attributes which are all mandatory columns. We have a “types” table with the same 8 columns together with two more columns that are used to translate a combination of attributes into a specific category and “level of relevance”. The “type” columns in the types table are, however, allowed to be null although each row must have at least one column that is not null – i.e. there is no row where every “type” column is null.

The task is to match each row in the big data set with all “sufficiently similar” rows in the types table and then pick the most appropriate of the matches – i.e. the match with the largest “level of relevance”. The data table had 500,000 rows in it, the types table has 900 rows. Here’s a very small data set representing the problem client data (cut down from 8 type columns to just 4 type columns):


create table big_table(
	id		number(10,0)	primary key,
	v1		varchar2(30),
	att1		number(6,0),
	att2		number(6,0),
	att3		number(6,0),
	att4		number(6,0),
	padding		varchar2(4000)
);

create table types(
	att1		number(6,0),
	att2		number(6,0),
	att3		number(6,0),
	att4		number(6,0),
	category	varchar2(12)	not null,
	relevance	number(4,0)	not null
);

insert into big_table values(1, 'asdfllkj', 1, 1, 2, 1, rpad('x',4000));
insert into big_table values(2, 'rirweute', 1, 3, 1, 4, rpad('x',4000));

insert into types values(   1, null, null, null, 'XX',  10);
insert into types values(   1, null, null,    1, 'XX',  20);
insert into types values(   1, null,    1, null, 'XX',  20);

commit;

A row from the types table is similar to a source row if it matches on all the non-null columns. So if we look at the first row in big_table, it matches the first row in types because att1 = 1 and all the other attN columns are null; it matches the second row because att1 = 1 and att4 = 1 and the other attN columns are null, but it doesn’t match the third row because types.att3 = 1 and big_table.att3 = 2.

Similarly, if we look at the second row in big_table, it matches the first row in types, doesn’t match the second row because types.att4 = 1 and big_table.att4 = 4, but does match the third row. Here’s how we can express the matching requirement in SQL:


select
	bt.id, bt.v1,
	ty.category,
	ty.relevance
from
	big_table	bt,
	types		ty
where
	nvl(ty.att1(+), bt.att1) = bt.att1
and	nvl(ty.att2(+), bt.att2) = bt.att2
and	nvl(ty.att3(+), bt.att3) = bt.att3
and	nvl(ty.att4(+), bt.att4) = bt.att4
;

You’ll realise, of course, that essentially we have to do a Cartesian merge join between the two tables. Since there’s no guaranteed matching column that we could use to join the two tables we have to look at every row in types for every row in big_table … and we have 500,000 rows in big_table and 900 in types, leading to an intermediate workload of 450,000,000 rows (with, in the client case, 8 checks for each of those rows). Runtime for the client was about 2 hours, at 100% CPU.

When you have to do a Cartesian merge join there doesn’t seem to be much scope for reducing the workload, however I didn’t actually know what the data really looked like so I ran a couple of queries to analyse it . The first was a simple “select count (distinct)” query to see how many different combinations of the 8 attributes existed in the client’s data set. It turned out to be slightly less than 400.

Problem solved – get a list of the distinct combinations, join that to the types table to translate to categories, then join the intermediate result set back to the original table. This, of course, is just applying two principles that I’ve discussed before: (a) be selective about using a table twice to reduce the workload, (b) aggregate early if you can reduce the scale of the problem.

Here’s my solution:


with main_data as (
	select
		/*+ materialize */
		id, v1, att1, att2, att3, att4
	from
		big_table
),
distinct_data as (
	select
		/*+ materialize */
		distinct att1, att2, att3, att4
	from	main_data
)
select
	md.id, md.v1, ty.category, ty.relevance
from
	distinct_data	dd,
	types		ty,
	main_data	md
where
	nvl(ty.att1(+), dd.att1) = dd.att1
and	nvl(ty.att2(+), dd.att2) = dd.att2
and	nvl(ty.att3(+), dd.att3) = dd.att3
and	nvl(ty.att4(+), dd.att4) = dd.att4
and	md.att1 = dd.att1
and	md.att2 = dd.att2
and	md.att3 = dd.att3
and	md.att4 = dd.att4
;

And here’s the execution plan.


---------------------------------------------------------------------------------------------------------
| Id  | Operation                  | Name                       | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT           |                            |    12 |  2484 |    11  (10)| 00:00:01 |
|   1 |  TEMP TABLE TRANSFORMATION |                            |       |       |            |          |
|   2 |   LOAD AS SELECT           | SYS_TEMP_0FD9D6619_8FE93F1 |       |       |            |          |
|   3 |    TABLE ACCESS FULL       | BIG_TABLE                  |     2 |   164 |     2   (0)| 00:00:01 |
|   4 |   LOAD AS SELECT           | SYS_TEMP_0FD9D661A_8FE93F1 |       |       |            |          |
|   5 |    HASH UNIQUE             |                            |     2 |   104 |     3  (34)| 00:00:01 |
|   6 |     VIEW                   |                            |     2 |   104 |     2   (0)| 00:00:01 |
|   7 |      TABLE ACCESS FULL     | SYS_TEMP_0FD9D6619_8FE93F1 |     2 |   164 |     2   (0)| 00:00:01 |
|*  8 |   HASH JOIN                |                            |    12 |  2484 |     6   (0)| 00:00:01 |
|   9 |    NESTED LOOPS OUTER      |                            |     6 |   750 |     4   (0)| 00:00:01 |
|  10 |     VIEW                   |                            |     2 |   104 |     2   (0)| 00:00:01 |
|  11 |      TABLE ACCESS FULL     | SYS_TEMP_0FD9D661A_8FE93F1 |     2 |   104 |     2   (0)| 00:00:01 |
|* 12 |     TABLE ACCESS FULL      | TYPES                      |     3 |   219 |     1   (0)| 00:00:01 |
|  13 |    VIEW                    |                            |     2 |   164 |     2   (0)| 00:00:01 |
|  14 |     TABLE ACCESS FULL      | SYS_TEMP_0FD9D6619_8FE93F1 |     2 |   164 |     2   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   8 - access("MD"."ATT1"="DD"."ATT1" AND "MD"."ATT2"="DD"."ATT2" AND
              "MD"."ATT3"="DD"."ATT3" AND "MD"."ATT4"="DD"."ATT4")
  12 - filter("DD"."ATT1"=NVL("TY"."ATT1"(+),"DD"."ATT1") AND
              "DD"."ATT2"=NVL("TY"."ATT2"(+),"DD"."ATT2") AND
              "DD"."ATT3"=NVL("TY"."ATT3"(+),"DD"."ATT3") AND
              "DD"."ATT4"=NVL("TY"."ATT4"(+),"DD"."ATT4"))

Critically I’ve taken a Cartesian join that had a source of 500,000 and a target of 900 possible matches, and reduced it to a join between the 400 distinct combinations and the 900 possible matches. Clearly we can expect this to to take something like one twelve-hundredth (400/500,000) of the work of the original join – bringing 7,200 seconds down to roughly 6 seconds. Once this step is complete we have an intermediate result set which is the 4 non-null type columns combined with the matching category and relevance columns – and can use this in a simple and efficient hash join with the original data set.

Logic dictated that the old and new results would be the same – but we did run the two hour query to check that the results matched.

Footnote: I was a little surprised that the optimizer produced a nested loops outer join rather than a Cartesian merge in the plan above – but that’s probably an arterfact of the very small data sizes in my test.There’s presumably little point in transferring the data into the PGA when the volume is so small.

Footnote 2: I haven’t included the extra steps in the SQL to eliminate the reduce the intermediate result to just “the most relevant” – but that’s just an inline view with an analytic function. (The original code actually selected the data with an order by clause and used a client-side filter to eliminate the excess!).

Footnote 3: The application was a multi-company application – and one of the other companies had not yet gone live on the system because they had a data set of 5 million rows to process and this query had never managed to run to completion in the available time window.  I’ll have to get back to the client some day and see if the larger data set also collapsed to a very small number of distinct combinations and how long the rewrite took with that data set.